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ON LARGE-SCALE SAMPLE SURVEYS
By P. C. MAHALANOBIS, Statistical Laboratory, Calcutta
(Communicated by R. A. Fisher, F.R.S.—Recewved 31 March 1943)

In sample surveys the final estimate is prepared from information collected for sample units of
definite size (area) located at random. Large-scale work involves journeys from one sample unit
to another so that both cost and precision of the result depend on size (area) as well as the number
(density per sq. mile) of sample units. The object of planning is to settle these two quantities in
such a way that (a) the precision is a maximum for any assigned cost, or (4) the cost is a minimum
for any assigned precision. The present paper discusses the solution for (1) uni-stage sampling (with
randomization in one single stage) both in the abstract and in the concrete; and for (2) multi-stage
sample (with randomization in more than one stage) mostly in the abstract.

The whole area is considered here as a statistical field consisting of a large number of basic cells
each having a definite value of the variate under study. These values (with suitable grouping) form
an abstract frequency distribution corresponding to which there exists a set of associated space
distributions (of which the observed field is but one) generated by allocating the variate values to
different cells in different ways. This raises novel problems which are space generalizations of the
classical theory of sampling distribution and estimation. On the applied side it also enables classi-
fication of the technique into two types: (a) ‘individual’ or (b) ‘grid’ sampling depending on
whether each sample unit consists of only one or more than one basic cell. For most space distribu-
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tion precision of the result is nearly equal for both types of sampling; these are called fields of
random type. For certain fields (including those usually observed in nature) precision depends on
sampling type; these are fields of non-random type.

Application to estimating acreage under jute covering 60,000 sq. miles in Bengal in 1941-2 is
described with numerical data. The margin of error of the sample estimate was about 2 9,, while
cost was only a fifteenth of that of a complete census made in the same year by an official agency.

PART I. INTRODUCTORY
1. INTRODUCTION

1. Since 1937 I have had the opportunity of studying in the Calcutta Statistical Laboratory
the problem of estimating with the help of sample surveys the area and yield of a number of
crops like paddy and jute in Bengal and wheat and sugar cane in the United Provinces. The
work has to be done on a large scale covering tracts of land fifty or sixty thousand square
miles or more in extent. The question of costs is therefore of great importance, and my aim
has been to develop a sampling technique which would supply, at any given cost, a final
estimate with the lowest possible margin of error.

2. It is the object of the present paper to give a general account of the work relating
to the estimation of crop areas. The basic principles are not new. These were enunciated
.concisely but with characteristic precision by Professor R. A. Fisher who stated that the
object of such sample surveys was  to give the maximum precision in return for the labour
expended’ (J. R. Statist. Soc. 1934, p. 615)—a point of view identical with that adopted in
the present paper. Infact, in one sense what has been done is to develop Fisher’s ideas in a
systematic way in the light of experimental studies of large-scale field surveys.

3. Asalready mentioned a characteristic feature of the work is its large scale of operations.
This introduces many special problems on the theoretical as well as on the applied side.
Four or five hundred investigators are often employed in the field survey; and they have to
work, not in a compact group, but scattered over the whole country covering fifty or sixty
thousand square miles in area. Preparatory and tabulation work has to be organized on
an extensive scale; in the jute survey, for example, it involved handling over 200,000 sheets
of village maps. The whole task thus partakes of something of the nature of an engineering
project; and this is why the present paper may be described as dealing with a problem of
statistical engineering.

4. The paper thus naturally falls into two distinct portions—one concerned with the
abstract theory and the other with the application to concrete problems. The first part is
purely introductory, and gives a general description of the nature of the problem in non-
technical language and a brief history of the jute-survey scheme which was the starting
point of the investigations.

5. Part IT* is concerned almost exclusively with the basic concepts and theoretical prin-
ciples in an abstract form supported, however, by the results of model sampling experiments.
This part is complete by itself and will be of special interest to those who desire to get
acquainted with the abstract theory without entering into the details of experimental pro-
cedure. This is followed by a discussion in Part ITT* of the application of the abstract theory

* The paragraphs have been numbered continuously except in the Appendices to Part 11, and equations
have been numbered according to paragraph numbers.
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to the estimation of area under crops with special reference to the work on jute in Bengal.
A summary is given of relevant experimental results with numerical examples. This account
of the jute survey is being given mainly for purposes of illustration. The emphasis throughout
has been first on elucidating the theoretical principles with the help of concrete examples;
and secondly, on the special features of work on a large scale. The successful organization
of sample surveys covering fifty or sixty thousand square miles is a definite advance in the
application of statistical methods to practical problems.

6. I am sorry that for unavoidable reasons I am obliged to present this paper in a rather
crude form. I have not been able to discuss or refer to work done by other investigators on
sample surveys or allied topics. Owing to the deterioration in the war situation in Bengal
practically the whole of the Statistical Library was removed in April 1942 to Giridih, a
place in the interior at a distance of over 200 miles from Calcutta, and the books are lying
there either in stacks or packed in boxes. At the time of writing this paper I did not, therefore,
have access to our library.

7. There are also many gaps in the paper on which work is in progress. I thought it
advisable not to wait for the completion of these investigations but to put down in writing,
even if in a rough and unfinished form, an account of some of the work done in Calcutta in
recent years. The most compelling reason is, of course, the growing menace of war in east
India which made me anxious to finish this paper without further delay. A second reason
has been the publication in the March 1942 issue of the Journal of the American Statistical
Association (which reached India in August) of an article on recent developments in sampling
for agricultural statistics, in which an account has been given of methods in certain ways
similar to those described in this paper, but no mention has been made of the work done in
India. This made me think it desirable to have an account of the present work published at
the earliest opportunity.

8. Practically the whole of Part II is entirely new, and has not been published elsewhere.
The account of the jute survey given in Part ITI has been based on the primary data described
in a series of reports prepared by me (and printed by the Indian Central Jute Committee)
in the course of a five-year scheme and in other papers mentioned in the following list. The
treatment adopted in the present paper is, however, entirely new, being based on a joint
study of the material for different years, while the earlier reports dealt with each year
separately. All the tables (with the single exception of table 25, which is taken from the
Indian Science Congress address) were specially prepared for the present paper and contain
much new information.

List of Publications

(1) A statistical report on the experimental crop census of 1937 (1.C.J.C., September 1938).

(2) A note on grid sampling, Science and Culture, 4 (5), 300, November 1938.

(8) First report on the crop census of 1938 (I.C.J.C., February 1939).

(4) Second report on the crop census of 1938 (I.C.J.C., July 1939).

(5) Report on the sample census of jute in 1939 (I.C.J.C., December 1939).

(6) Statistical report on crop-cutting experiments on jute, 1939 (I1.C.J.C., 1940).

(7) A sample survey of the acreage under jute in Bengal (Sankhya, 4, 511-530, March
1940).

41-2
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(8) Sample census of the area under jute in Bengal in 1940 (1.C.J.C., 1941).

(9) Crop-estimating experiments on jute in Bengal, 1940 (I1.C.J.C., 1941).

(10) Sample census of the area under jute in Bengal, 1941 (1.C.J.C., in the Press).

(11) Sample surveys (Presidential Address, Section of Mathematics and Statistics, Indian
Science Congress, Baroda, January 1942).

2. BRIEF HISTORY OF THE JUTE-SURVEY SCHEME

9. Statistics relating to crops in India have been known to be unreliable for a long time.
In 1935 Sir Girja Shankar Bajpai (of the Department of Lands of the Government of India)
directed my attention to this question, and a little later I prepared a tentative scheme of
sample survey. Sir John Russell saw this scheme during his visit to Calcutta in January 1937
and referred to it in his Report on the Imperial Council of Agricultural Research (Govt. of India,
1937). A statutory body called the Indian Central Jute Committee was set up a little later;
and this Committee at its very first meeting in February 1937 sanctioned a grant of five
lakhs of rupees (£37,500) for a five-year scheme for the improvement of the estimate of
area under jute in Bengal. The Committe at first had the idea of carrying out a detailed
and complete census of each plot under jute roughly in instalments of one-fifth of the whole
area each year. My opinion having been invited in the matter I opposed this proposal, and
suggested that a small-scale pilot survey should be undertaken to explore the possibilities

of the sampling method. The Committee accepted this proposal and provided necessary
funds for this purpose.

10. This was the beginning of the jute-survey scheme. In the first exploratory survey of
September and October 1937 a good deal of field material based on both complete enumera-
tion and sample survey was collected. The Jute Comittee, was, however, not convinced
about the practical usefulness of sample surveys, and was doubtful whether the scheme
should be proceeded with or not. Fortunately, Professor R. A. Fisher, who came to India
at this time, examined the scheme in January 1938, and recommended it in written notes
as well as in personal discussions with government officials. His powerful support turned
the scales in favour of the sample survey; and funds were provided for a series of gradually
expanding exploratory surveys in 1938, 1939 and 1940, culminating in a full-scale survey
covering about 60,000 sq. miles in Bengal in 1941. The total expenditure was Rs. 4,14,000
(a little over £31,000) in five years.

11. A special Jute Census Committee had been set up for the scheme with representatives
of Government, growers, and manufacturers; I also was a member and acted as its Statistical
Adviser. This Committee was in administrative charge of the scheme, but the whole of the
statistical and field work was done under my technical control and guidance. I was able
to undertake this heavy responsibility only because of the willing co-operation of my fellow-
workers in the Calcutta Statistical Laboratory.

12. To judge the success (or otherwise) of the scheme the Jute Census Committee had
laid down three tests. The reliability of the sample survey must be such that the margin of
error of the final estimate of the area under jute should not exceed 5 %, ; secondly, the results
must be available sufficiently early in the jute season and preferably by the first or second
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week of September; and finally, the cost of the sample survey should not be excessive. As
will be seen later, the sample estimate in 1941 agreed within 2-8 9, of an entirely independent
official estimate based on a complete detailed census of each individual plot sown with jute
which was carried out in that year by Government for the purpose of a compulsory scheme
of jute regulation. The estimate based on the sample survey was ready within one week of
the cessation of field work, and was submitted to Government on 27 August 1941. The cost
of a sample survey, was estimated at Rs. 1,14,000 (or about £8500) per year against an
expenditure of about fifteen lakhs of rupees (about £110,000) for a complete census. The
Jute Census Committee therefore considered the sampling technique to have fully satisfied
all three tests, and recommended to Government the adoption of the sample survey in future.

3. THE NATURE OF THE PROBLEM: SURVEY OF CROP AREAS

13. Sampling technique assumes a particularly simple form in the familiar urn problem.
Balls are drawn from the urn, and by counting the number of balls of each colour in the
sample the relative proportion of balls of different colours in the sample is ascertained, and
hence the composition of the balls in the urn inferred. The margin of error of the estimate
is also calculated with the help of the familiar binomial or multinomial distribution. In
the crop census an analogous method would be to draw at random a suitable number of
plots of land and ascertain which of these are under the particular crop under survey. In
order that statistical principles may be used in a valid manner it is essential that the sample
plots should be picked up strictly at random. The task would be quite easy if the plots were
of equal size. If the plots were serially numbered it would then be sufficient to select the
sample plots with the help of a series of random numbers. But unfortunately this method
cannot be adopted, as the size of individual plots in Bengal varies widely from a tenth or
twentieth of an acre to several hundreds of acres. Selection by serial number of plots would
not therefore give each unit area of land the same chance of being included in the sample;
and samples drawn in this way would not be truly random.

14. One way of getting over the difficulty of unequal size of plots would be to form pro-
gressive totals of the area of the plots in serial order, and then use random numbers on the
basis of such progressive totals themselves instead of the serial numbers. This would supply
a theoretically valid sample. The total number of revenue plots which would have to be
taken into consideration in Bengal for this purpose would be, however, something like a
hundred millions; and the task of compiling the area of individual plots and of forming the
progressive totals would be not only expensive but difficult to carry through with accuracy
in practice. But this is not all. In an appreciable number of cases (30 %, for jute) the whole
of the plot is not under the same crop. If such a plot is included in the sample it would be
difficult to allot the plot to a particular crop in an unambiguous manner.

15. In this situation it becomes necessary to use not points but sample units of a finite
size like 4-acre or 20-acre or 40-acre. In my two earliest publications in 1938 I had
referred to these sample units as ‘grids’, and this term has been adhered to in the present
paper. Other considerations also make the same procedure inescapable. In the case of
large-scale surveys covering areas of the order of fifty or sixty thousand square miles only
a limited number of sample units can be used within the available resources of labour or
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money, and the sample units would be on the whole widely scattered. The time required for
moving from one sample unit or grid to another (which is called ‘journey time’ for con-
venience of reference) would not be negligible in comparison with the time required for
locating the sample units and estimating the proportion of jute in it. It would be un-
economical to examine or enumerate a single plot at each locality, and it would be obviously
possible to examine or enumerate a group of plots or sample units of fairly large size at each
locality visited by the investigators, as the additional time required for this purpose would
be usually small. Considerations of economy thus suggest the use not of single plots but of
sample units of fairly good size.

16. In this method the whole area would be divided into a suitable number of zones,
each of which would be as homogeneous as possible; and within each zone a suitable number
of sample units or grids of a suitable size would be located at random and examined for the
proportion under jute or the crop under survey. If a sufficiently large number of grids are
used it would be possible in this way to determine the average proportion of land under jute
in each zone, and hence, multiplying by the area of the zone, the area under jute in each
zone. Adding the figures for the different zones it would then be possible to obtain the total
acreage under jute for the country as a whole.

17. Consider now what should be the size or area of each sample unit or grid. Usually
the total cost (or the total number of field investigators) at the disposal of the party would
be fixed. If work is done with grids of a large size there can be only a few of them, so that
they will be widely scattered and the density (or number of grids per square mile) would be
small. On the other hand, if the grids are of small size there can be more of them, so that
they would lie fairly close together and the density would be higher.

18. The important point to be noted is that the need of keeping the total cost the same
obviously places a restriction on the choice of the size (that is, the area) and the density of
the sample units. Once the size (or area) of individual sample units is fixed, the total number
allowable also becomes fixed. On the other hand, if the total number of sample units is
fixed, then the size or area of each individual sample unit in its turn becomes determined.
It is not possible to choose independently both the area of individual sample units and their
number. Questions of cost thus supply one connexion between area and number of sample
units. This is why a study of the ‘cost function’ or how the cost depends on the size (or area)
and density (or number per square mile) of sample units is a matter of great importance in
the present connexion.

19. But cost is not the only factor. Consideration must also be given to the precision or
the margin of error of the final estimate. The variance or the margin of error for individual
sample units would be large when the size or area of the sample unit is small. The variance
would decrease, that is, the precision of individual sample units would increase as the area
of each individual sample unit is increased. The variance of the mean value based on the
whole group of sample units increases. It has already been seen that if work is done with
sample units of small size, a large number of such units can be employed; the small size of
sample units would mean a comparatively large variance for individual units, but their
large number would tend to reduce the variance of the mean value. On the other hand, if
work is done with sample units of large size (i.e. area) then only a few of them can be afforded.
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Here, although the variance for individual sample units would be comparatively small,
their small number would tend to increase the variance of the mean value.

20. In this situation whether there is any net gain or not in the precision of the mean value
will just depend on whether the increase due to the reduction in the number of sample units
is or is not compensated for by the decrease in the variance of individual sample units as their
area is increased. This question can only be settled by studying experimentally how the
variance changes as the area of individual sample units is increased ; that is, by studying the
variance as a function of the size (i.e. area) of individual sample units.

21. From the point of view of sampling technique the following questions thus arise:

(1) What should be the size of each sample unit or grid in each zone?

(2) How many such sample units should there be altogether, and how should these be
distributed among different zones?

These questions must of course be settled in accordance with (a) the degree of precision
required in the final estimate, and () the amount of labour or money which can be used for
the sample survey. If the total amount of money or labour is fixed, the next object will be
to settle the size and density of grids in order to obtain the final result with the minimum
possible margin of error. On the other hand, if the precision of the final estimate is fixed,
then the size and distribution of grids must be settled in such a way that the work may be
done at a minimum cost. This is the typical problem in the estimation of the area under
Crops.

Production (or yield) surveys

22. A second form of the sample survey on a large scale occurs in crop-cutting experi-
ments. For purposes of crop forecasts the ultimate object is usually to obtain an estimate of
the total production of a particular crop over the whole country. The whole area is, however,
usually divided into a convenient number of zones or administrative divisions, and separate
estimates for each zone or region are sometimes required. It is also sometimes necessary to
have more detailed knowledge of the yield per acre over comparatively small pieces of land.
This, however, can be conveniently considered to be a third type of problem which I shall
describe a little later.

23. As compared to the area census, crop-estimating work is necessarily more com-
plicated and more expensive. In the area census the only thing necessary is to measure or
estimate the proportion of land under a particular crop or under a number of different
crops for each sampling unit or grid. In crop estimating surveys the actual crop has to be
harvested, and usually has also to be subjected to some kind of processing before being
measured.

24. Now consider a particular zone or area under survey. A procedure analogous to that
described in the case of the area census would be to locate a suitable number of sampling
units or grids purely at random over the whole zone or area. As the cost of harvesting the
crop for each sampling unit is usually high, it is clear that the total number of sample units
or grids would have to be much smaller than that in the case of the area census at any given
level of total cost. In other words, the sampling units must be necessarily more widely scat-
tered in crop-cutting work as compared to the area census at any given level of expenditure,
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which means that the time and expense required for travelling from one sampling unit to
another would be necessarily greater in the case of crop-cutting work. The cost is usually
prohibitive.

25. A different type of sampling procedure is, therefore, often adopted in practice. In-
stead of scattering all the sampling units purely at random these are grouped together in
hierarchical order. For example, the whole area may be divided into a fairly large number
of compact areas each of which may be called a ‘block’, and a suitable number of blocks
out of the total number may be selected at random. Within each selected block a suitable
number of villages is selected at random; within each village a suitable number of fields

_is selected at random and finally within each selected field a suitable number of sample
units, again purely at random, is located.

26. Inthe area census the sampling units are located by one single stage of randomization,
and hence this method may be called single or uni-stage sampling. In the case of crop-
“estimating surveys, on the other hand, the sample units are located by successive stages of
randomization, and this may be called multi-stage sampling. In this method each and every
portion of the area under survey is subjected to at least one stage of randomization, but some
of the regions are subjected to more than one process of randomization. ‘

Mapping surveys

27. I may now briefly refer to a third form of the sample survey. The object here is to
obtain detailed information regarding the yield of a crop or some soil characteristic or some
other variate for comparativelysmall pieces of land. In the case of yield of crops this may even
be such a small piece as a revenue plot, the average size of which is somewhat less than half
an acre in Bengal. For example, the object sometimes is to make an equitable assessment
of the land revenue based on an objective estimate of the fertility of the land; the average
yield over even a single village is not of any use for this purpose, and detailed information
has to be collected for different classes of land within the village. Such problems fall under
mapping surveys in which the ultimate object is to prepare a map of the whole area showing
the fertility level of the land estimated in terms of the yield of selected crops.

28. To sum up, there are three broad types of problems which may be called respectively
(1) area surveys, (2) yield (or production) surveys, and (3) mapping surveys. In each case
work has to be done on a large scale; and in each case special types of sampling technique
have to be developed in order that the work may be done with efficiency and economy. In
the present paper I have explained certain basic concepts and theoretical formulations
which will be found useful in the case of all three problems, but otherwise I have confined
my attention mainly to uni-stage sampling which is specially appropriate for area surveys.
Work is in progress on the other two problems, and I hope to be able to deal with these
questions in subsequent papers.

Exploratory work

29. It may be useful at this stage to point out that the approach adopted in the present
paper is especially suited to surveys (like crop forecasts) which are carried out every year
or at fairly short intervals. It is then possible to secure information relating to the ‘cost
function’ and the ‘variance function’ either by a preliminary series of exploratory surveys
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or by special experiments carried out along with regular annual or periodic surveys. The
planning of sample surveys thus consists of two stages, namely, (@) the exploratory and (4) the
final stage. In the exploratory stage the chief object is to study the cost and variance func-
tions, and the only way to do this is to carry out suitably designed experiments on the field.
The most economical method would obviously be to proceed by gradual stages. This is what
was done in the jute-survey scheme. In 1937 a pilot survey covering an area of only 124 sq.
miles was made. This supplied a rough idea of the physical order of the different elements
involved, and enabled a second pilot survey to be organized on a much larger scale in 1938.
Thus the plan was adopted of a series of exploratory surveys on a gradually expanding scale
culminating in a full-scale country-wide survey covering roughly 60,000 sq. miles in 1942.

80. The variance function. Information was collected for sample units or grids of widely
varying sizes from a fraction of an acre to 30 or 40 acres or even several hundreds of acres in
some cases, and the variance of individual grids of different sizes directly calculated. In the
case of statistical variates conforming to the normal law one would expect the variance to
decrease inversely as the size (in this case, the area) of the sampling units or grids. It was
found, however, that the actual decrease was much smaller, so that the gain in precision
by increasing the size of individual grids was appreciably less than one would ordinarily
expect on the normal theory. This may be ascribed to the fact that the proportion of land
sown with a particular crop (or the yield of a crop) in plots in the same neighbourhood are
not statistically independent but are correlated. The absence or presence of such correlation
determines whether the variance would follow the normal law or would decrease more
slowly with increasing size of grids. In fact, this furnishes a convenient basis for the classi-
fication of fields into two distinct types, namely, (a) random type (in which the variance
function is normal) and () non-random type (in which the variance decreases more slowly).
The theoretical formulation is given in Part II; the point to be emphasized is that this is
based not on speculative grounds but on experimental evidence and on the fact that such
classifications lead to economy in the planning of sample surveys.

31. Cost of operations. From the very beginning both field and statistical workers were
asked to keep daily records of the time spent on different types of work. This furnished the
material for the cost function which was studied in the first instance in labour units, that is,
in terms of man-hours or hours of work per investigator or computer which were later
converted into money values. In doing this the total cost of course was taken into con-
sideration; for example, the cost of one investigator-hour included not only the pay of the
field investigator but also the pay of the inspecting and supervising staff, travelling and all
contingent expenses. After much experimentation (some account of which is given in §4
of Part ITI), it was found that the cost of field operations could be split up into three chief
components. First of all there was the time required for going from one sampling unit to
another which was called ‘journey time’. This involved movements from one camp to
another (camp being defined as the place where the field investigator spent the night), from
camp to field and back, and from grid to grid. Next came the time required for locating
the grids, enumerating the crops, and making necessary field entries; this was called
‘enumeration time’. Besides this a certain amount of time was required for miscellaneous
work.

Vor. 231. B584 42
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32. It was found that in a large-scale survey the journey time was much greater than
enumeration time; in the jute survey of 1941 it was in fact three times larger. It was also
found that the journey time depended upon the number of grids per square mile (i.e. on
their distance apart) but was independent of the size (or area) of the individual grids.
Enumeration time, on the other hand, naturally increased with the size of grids, but was
independent of their density. Time required for miscellaneous work was more or less con-
stant and independent of both size and density of grids. A similar analysis was also made
of the time required for the statistical portion of the work. Further details are given in
Part ITI. Numerical values of the parameters naturally fluctuated to some extent from
year to year, but the results were reasonably steady, and in general agreement with
what one would expect from broad considerations. The experimental work thus fully
confirmed the need as well as the possibility of studying the cost function on empirical
lines.

33. Optimum size and density of grids. Having determined the variance and cost functions
with sufficient accuracy for practical purposes the next thing necessary was to settle the
best size and density of sample units or grids. In the jute survey the total expenditure which
could be incurred was fixed by the amount of the grant sanctioned for this purpose. In this
situation the size and density of grids had to be determined in such a way that the margin
of error of the final estimate would be a minimum. (Alternatively, the permissible un-
certainty in the final estimate being assigned, it is possible to work out a solution for
doing the work at minimum cost.) Such solutions (which may be called optimum solu-

tions) are discussed in an abstract form in Part II, and numerical examples are given in
Part III.

34. As already indicated, the theoretical approach adopted in the present paper is based
on the joint use of the variance and the cost functions. This has been justified by the fact that
variances were found in practice to decrease more slowly than one would expect in the
normal case, and also by the possibility of determining the cost function with sufficient
accuracy for all practical purposes by empirical methods. The present approach has been
also fully justified on grounds of economy. The cost of a survey on the same scale as the jute
survey of 1941 could have been easily increased two or three times by a plausible but wrong
choice of the size of grids. For annual or periodic surveys (which give scope for what I have
called exploratory work) the present technique would thus appear to be the most suitable
one. On the other hand, for a survey which would be carried out only once or only at very
long intervals and where no previous information is available a simple random sampling
procedure would probably be found most convenient.

35. The human factor. So far attention has been confined to sampling fluctuations (which
arise from the information being based on samples or limited portions of the whole popula-
tion) which are amenable to statistical treatment. The exploratory work done in 1937
and 1938, however, showed clearly that, apart from such random fluctuations inherent in
the sampling method, crude mistakes in locating or identifying the plots or in estimating
the proportion of land under jute within each sample unit were by no means negligible.
This was partly due to lack of experience on the part of the field workers, and an appreciable
improvement was found after they had been given suitable training. In many cases
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the inaccuracies were, however, due to false entries or gross negligence, and systematic
inspection of the field work was found to be essential to maintain a minimum standard of
accuracy.

36. Subsamples. This, however, was not enough. The method of arranging the field survey
in the form of two separate but interpenetrating subsamples in each zone was therefore
adopted. Linked pairs of sample units were located at random on maps; and one sample
unit was allotted to half-sample (4) and the other to half-sample (B) ; the distance between
each pair of grids was kept constant, but the orientation was settled at random. The informa-
tion for all sample units belonging to half-sample (4) was collected by one set of investi-
gators, while the information for the sample units belonging to half-sample (B) was collected
independently by an entirely different set of investigators. The time programme was arranged
in such a way that investigators belonging to the two different sets (4) and (B) never worked
in the same region at the same time. In this way independent records for each of a pair of
adjoining sample units were obtained and two separate estimates of the area sown with jute.
The degree of agreement between these two estimates supplied a good idea of the precision
of the survey.

37. There were many difficulties on the organizational side. There was not a single
trained worker to start with. Apart from considerations of economy, one important reason
why it was essential to adopt the gradually increasing scale of work was the need of building .
up the necessary human agency for carrying out surveys on a country-wide scale. On the
statistical side also it was necessary to organize the computational work, standardize routine
methods of preparing the sample units, and arrange for continuous and systematic tabulation
of the field data and their final analysis.

38. In fact, apart from the study of the cost and variance functions, one of the great
advantages of the exploratory method was the opportunity it gave for developing suitable
methods of controlling mistakes arising from the human factor, for giving training to the
workers and to build up the necessary human agency for both field and statistical work.
Once this was done, and the cost and variance functions were determined, the final stage
was reached when the planning of the sample survey could be undertaken on scientific lines.
In one sense there is, of course, no final stage. Conditions are changing from year to year;
and it would be obviously desirable to continue auxiliary work of an exploratory type (along
with the main survey) with the help of which the efliciency of the survey can be continuously
improved. ‘

Concluding remarks

39. As already noted, the sample survey of the kind described here may be called a pro-
ject in statistical engineering. The whole scheme was essentially a co-operative undertaking;
and the real credit for the successful organization of the jute survey therefore belongs to the
large group of both statistical and field workers who were associated with me in this project.
It would be invidious to mention particular names, and I am reserving this pleasant task
for a more suitable occasion, namely, a full report of the whole undertaking. I cannot,
however, conclude this paper without recording my grateful appreciation of the help I
received from Mr A. P. Cliff, the first Secretary of the Indian Central Jute Committee,

without whose drive and initiative the jute-survey scheme would never have come into
42-2
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operation; the late Subhendusekhar Bose, who was associated with the work until his
untimely death in November 1938; Mr N. C. Chakravarti, B.C.S., who first set up the field
organization; and Messrs Samarendranath Roy, Sudhir Kumar Banerjee, Jitendramohan
Sengupta and Purnendusekhar Bose, without whose untiring help it would not have been
possible to prepare this paper in the course of seven or eight weeks.

PART II. OUTLINE OF THE THEORY FOR UNI-STAGE SAMPLING

40. I shall consider the general principles in abstract form in this part, and discuss in
outline the relevant theory in the case of uni-stage sampling which is especially appro-
priate for the estimation of the area under crops. Illustrative numerical examples are given
in Part III of the paper.

1. BAsic cONCEPTS

41. In this section I shall explain the basic concepts of fields or space distributions of a
statistical variate and associated frequency distributions.

Statistical variates and fields. The fields considered in this paper are essentially geographical
regions of finite areas. Use may be made, therefore, of rectangular co-ordinates in the usual
way to specify any given point or location in the field. At (or rather in the neighbourhood of)
each point (x', ") is found a finite value of the variate under consideration, say, z = z(x',y’).
It must be remembered, however, that the z-variate is essentially a statistical quantity which
can be defined only as a kind of average value or density over a certain finite area in the
neighbourhood of each point.

42. Basic cells. It is thus found that the fields considered here have an essentially discrete
structure. The concept of a basic cell as the smallest area (measured in acres or square miles
or any other suitable unit) for which the z-variate may be considered to have a sufficiently
precise meaning is therefore introduced. It is not suggested that the size of this basic cell is
an absolutely determinate and atomic quantity. No doubt there is a certain amount of
arbitrariness in selecting a particular value as our smallest unit, but such arbitrariness is
inescapable, and fortunately does not affect the general argument. It is also convenient to
think of these basic cells as having a square shape. This again is arbitrary, but the general
argument will not be affected by making this assumption. The field can thus be visualized
as being made up of a definite number of ultimate or basic cells of square shape and finite
area. The symbol 7 (to be called ‘quad’*) can be used to represent the area of a basic cell
measured in some suitable unit like acre, sq. mile, etc. If 4 is the total area of the field under
consideration, then 4/00 = N, will give the total number of ultimate basic cells. This N, will
be generally large in the case of fields considered in the present paper.

43. Co-ordinate numbers (i', ;). Having introduced the discrete structure, strictly speaking,
it is not permissible to use continuously variable co-ordinates x” and y’. In this situation a
series of co-ordinate numbers " =1,2,3, ...,/ and ;' = 1,2, 3, ...,m may be used; so that
the location of any particular ultimate cell may be specified by a pair of values for (7', j').
In terms of the quad or [J which serves as the scale unit for length the total area 4 = /m.

* As suggested by Professor F. W. Levi of Calcutta University, who informed me that Hilbert had used
this name for the symbol [7in a course of lectures.
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Therefore, when it is necessary to emphasize the discrete structure of the field, the notation
z(¢', j') for the variate will be used.

44. Multi-variate fields. This notation can also be extended easily to cover more than one
entity; for example, say the respective area under different crops which may be represented
by different variates z,(i',5'), z,(¢', j'), ..., 2,(¢', j'), etc. A “field’ in the sense of the present
paper thus consists of a finite number, say N,, basic cells arranged in a definite space or
geographical order together with a single value (or a set of values in the multi-variate case)
of z for each basic cell.

Abstract and space distributions

45. Abstract set and abstract frequency distribution of z. Now consider a particular field con-
sisting of N, cells in which the value of z is uniquely determined for each cell, that is, for
each pair of values of (¢, ') or in the neighbourhood of each point specified by (x, ). The
set of N, values of z then constitute the abstract set of z. Using any suitable set of ranges or
class intervals, which may be equal or unequal in length, a histogram or finite frequency
distribution of the N, values of z can also easily be constructed. This will be called the abstract
distribution of z, and will, in general, depend upon the detailed specifications, namely, the
number and lengths of the class intervals which may be denoted by (z;—z]), (z]—2z23), ...,
(z;_,—z,). The above set of values of (z;—z{), etc., which determine the framework of the
classification may be concisely represented by I(c).

46. Space distribution of z. In the case of an actual field, the N, values of z, however, have
a definite space distribution, and the statistical properties of this space distribution are of
great importance in the present problem. A clear distinction must be made, therefore,
between what I have called the ‘abstract distribution of z’, and the corresponding ‘space
distribution’. Consider a field consisting of N, basic cells, and N, (or N, sets of ) values of z.
Corresponding to any particular abstract distribution there are (N;)! different ways of
arranging the N, different values of z in N cells. Each of these (N,)! distributions may be
considered to be a micro-distribution or a micro-state in space corresponding or belonging
to the given abstract distribution of z. (I am using the phrase ‘micro-state’ in the sense in
which it is used in statistical mechanics.) It will be assumed that these (,)! micro-distribu-
tions or fields may be considered to be ‘equally likely’ in the sense in which this phrase is
generally used in the theory of probability. The field which is actually observed will be only
one particular micro-distribution or micro-state, and as such is as likely to occur as any other
micro-distribution by pure chance.

47. It may happen that some of the values of z are identical. When the abstract set of z
is classified into a finite number of class ranges, and all values of z falling within the same
class range by the same symbol are labelled, replicated values of z will then necessarily
occur. If N, N, ..., N, etc., are the frequencies in the different classes, then the total
number of micro-states which can be physically distinguished will be given by

(V) (M) (V)L (V)1

where the sum of N+ N,+ ...+ N, = N,. If, however, the values of z falling within the same
class range are considered to be distinguishable in a statistical sense, then the total number
of micro-states will be (N,)!. Usually consideration will be given to expectation values or



342 P. C. MAHALANOBIS ON LARGE-SCALE SAMPLE SURVEYS

statistical or probabilistic properties of the distributions, and for such purposes, so far as
the abstract argument is concerned, it will be in most cases immaterial whether the values
of z within the same class range are considered to be distinguishable or not. In either case
the appropriate weights would automatically enter into the calculations and leave mean
values and probabilistic results formally unchanged. The total number of exhaustive (and
mutually exclusive) micro-states will be written as N, which will be either equal to (N,)!
or some other appropriate number determined by the multinomial distribution which
will be of the order of (N,)! and large in comparison with N,.

Different types of sampling procedure

Before proceeding further it will be convenient to consider different types of sampling
procedure. ‘

48. Unitary and zonal sampling. To fix ideas, let it be supposed that there is a field consisting
of N, basic cells, and out of these it is desired to select z cells as a sample. Broadly speaking
there are two different procedures which can be adopted. The zn sample cells may be drawn
out of the whole lot of N, cells without dividing the field into smaller subdivisions. This is
the first type, which may be called unitary sampling over the whole field. This, of course, is
a familiar procedure often adopted in statistical practice.

49. There is a second broad type, which may be called zonal sampling. In this method
the whole field is divided into a suitable number of| say, £ compartments, strata or zones,
say 4, where £ = 1,2, ...,/, and then a certain number of samples is allotted to each com-
partment. 7, is written as the number of samples allotted to the Ath compartment or zone;
summing 7, for all values of £ will naturally give the total number of sample cells # for the
whole field. A familiar example of this type of sampling is the one called ‘stratified sampling’
by Professor J. Neyman. ‘

50. Unrestricted and configurational sampling (this so far as the field itself is concerned). As
regards the actual procedure of choosing the individual basic cells there are also two broad
types. The 7 basic cells over the whole field in unitary sampling may be chosen (or 7, cells
in the kth zone in the zonal sampling) individually at random, each individual basic cell
being given the same chance of being included in the sample. This may be called the un-
restricted type of random sampling, and its two subclasses as (1) unrestricted unitary, and
(2) unrestricted zonal, depending on whether the field is treated as an undivided whole or
is subdivided into compartments. In unrestricted random sampling no restriction what-
ever is imposed on the individual basic cells forming the sample of z basic cells in the case of
the whole field (or n, basic cells in the £th zone).

51. Configurational or ‘grid’ sampling. In zonal sampling it is seen that certain space
restrictions are imposed on the field itself, but none whatever on the sample cells. However,
geometrical restrictions can be imposed, not on the field, but on the sample itself. For
example, the sample in compact blocks or groups of basic cells may be collected. Thus
compact blocks of two, three or more cells occurring in a column may be used. Or square-
shaped blocks of 4,9, 16, ..., m? adjoining basic cells may be collected ; or blocks of a rect-
angular shape consisting of m x n cells, etc. Instead of taking compact blocks of adjoining cells,
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groups of cells arranged in any particular geometrical configuration may also be collected,
for example, four cells at the four corner points of a square of a particular size, etc.*

52. Grids. It will be convenient to give a name to such sample units consisting of groups
of cells. In the Statistical report on the crop census of 1937, I had used the word ‘grid’ for this
purpose, and it may be retained here. From this point of view, therefore, a single grid may
be defined as a sample unit consisting of a number of basic cells arranged in a standard
geometrical pattern or configuration. In this sense one may speak of grids of a definite size
or shape (like square or rectangular grids) or having a definite pattern.

53. The essential point to be noted is that each such ‘grid’ functions as a complete in-
tegral unit for purposes of sampling, and has to be located as a whole in a purely random
manner over the field. In order to do this, appropriate rules of procedure must be adopted.
For example, in the case of a square block of cells, i.e. in the case of a grid of a square shape,
one may locate the lower left-hand corner point at random, and then proceed to build up
the whole block by taking the required number of cells along adjoining columns and rows.
It will be noticed that in configurational sampling restrictions are imposed on the geo-
metrical arrangement of the individual basic cells forming each sample unit or ‘grid’, but
each sample unit or ‘grid’ as a whole is located at random. Within specified restrictions the
principle of randomization is thus preserved intact so that statistical methods may be used
on a valid basis.

54. Configurational sampling itself may be of either (@) unitary or () zonal type. Thus
there are four different types: (1) unitary unrestricted, (2) zonal unrestricted, (3) unitary
configurational, and (4) zonal configurational.

55. Gridnotation. As will be seen later it is often necessary to vary the size (thatis, the area)
of the grids from zone to zone, but it is usually possible to keep the size of the grid constant
within each zone. Let 7, be the area of each basic cell in the Ath zone—usually this will be
the same in all zones, in which case [ may be used instead of [1,. Let each grid in the £th
zone consist of 7, basic cells arranged either in the form of a compact square or rectangle,
or otherwise in any geometrical configuration or pattern in which the basic cells are not
necessarily contiguous; the first is, of course, a special case of the second. The 7y, basic cells
arranged in any geometrical configuration will be denoted by Gr.(C, 7y), the shape
depending on the nature of the particular configuration chosen. The area occupied by each
individual grid in the kth zone, which may be written as a;, is then given by a, = Oy,
(or Ong;, when the size of basic cells is the same in all zones). In unitary sampling (in which
the field is treated as an integral whole without subdivision into zones) the suffix £ may be
dropped, and @ = [On, written as the size of individual grids.

56. Very often it is convenient to use grids which are simply compact blocks of adjoining
cells arranged in a rectangular or square shape, each consisting of say ¢, and j, basic cells
in the two directions in the kth zone. In this case ny, = i,j, and a, = [0, ¢, J, in the kth zone,

* It is to be noted that such sampling introduced a ‘bias’ in the neighbourhood of the boundary of the
field, inasmuch as basic cells in the interior of the field appear a certain number of times in the totality of all
samples while those near the boundary appear less often. In the present study, the effect of the ‘bias’ on
the field, which will be called the border effect, has been discussed in a separate note, No. 6, in the appendix
to this part.



344 P. C. MAHALANOBIS ON LARGE-SCALE SAMPLE SURVEYS

or simply @ = i in the case of unitary sampling. The area covered by the grid (which is the
maximum area which can be bounded by straight lines joining any two constituent cells
of the grid) will in general be different from 0,7y, and will depend upon the shape of the
configuration; in the particular case of a compact grid the two would, of course, be equal.

Uni-stage and multi-stage sampling

57. It should be noted that all the four types of sampling described above have one
common characteristic, inasmuch as the process of randomization is carried out only once
in each and every region of the field. This may be called uni-stage sampling. More com-
plicated methods in two or more stages may also be adopted in which the process of random-
ization is used at least once in each region of the field, but certain regions are subjected to
a second, third, or further stages of randomization. For example, in crop-cutting experi-
ments a common procedure is to select at random a certain number of villages; then to select,
again at random, a certain number of fields within each of the villages already included in
the sample in the first stage; and then to select at random certain portions of each selected
field. Here the first stage of randomization refers to the selection of villages, and this process
covers the whole of the area under survey. But once the first stage of randomization is
completed, the second stage of randomization is restricted only to fields lying within selected
villages, so that fields belonging to excluded villages have no further chance of being included
in the sample, that is, are not subjected to the second stage of randomization. In the same
way the third stage of randomization is restricted to only those fields which have been already
included in the sample at the second stage. In multi-stage sampling more and more basic
cells or larger and larger areas are excluded at each stage, and the process of randomization
becomes more and more restricted in coverage or extent.

58. The type of sampling adopted at different stages of sampling may of course be
different. Zonal unrestricted may be adopted in the first stage, unitary unrestricted in the
second stage, and finally unitary configurational in the third stage. For example, in crop-
cutting work the whole area may be divided into a number of zones and villages selected
purely at random (zonal unrestricted) in the first stage; within each village the fields may
be selected purely at random (unitary unrestricted) in the second stage; and finally within
eachfield compact blocks of square shape may be selected at random (unitary configurational)
in the third stage. There are four fundamental types of sampling, namely, (1) unitary
unrestricted, (2) zonal unrestricted, (3) unitary configurational, and (4) zonal configura-
tional, and any one of these may be used at any stage. If there are s stages of sampling then
the number of possible combinations of different types of sampling procedure will be 4¢.
This will indicate the wide range of choice in the selection of suitable types of sampling
procedure.

Difference between unrestricted and configurational sampling

59. Consider now the difference between unrestricted and configurational sampling.
It will be sufficient if these two methods are compared in the case of the unitary field. Corre-
sponding to any abstract distribution of N, values of z it is seen that there are N micro-states
generated by the allotment of the N, values of z to the N, basic cells of the field in all possible
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ways. Serial numbers 1,2, ..., 5, ..., N may be applied to these N micro-states in any manner
necessary for purposes of identification; from this the sth micro-state is derived.

60. Now consider any particular, say, the sth micro-state. Consider two grids (each
consisting of n, basic cells arranged in a definite geometrical pattern) located at random on
this sth micro-state or field. These two grids may be considered to have an identical position
if they consist of the same identical set of 7, basic cells. On the other hand, they will be con-
sidered to have different positions when there is at least one basic cell which is not common
to both the grids. As the whole field consists of a finite number of cells A}, it is clear that the
total number of different positions of any grid of specified pattern will be finite. Call this
number N’. This number N’ will, of course, depend not only on what is known as the abstract
distribution of z, but also on the size and shape of the field and on the number 7, of basic
cells and the pattern in which they are arranged to form each grid. It will, however, be
identical for all micro-states for any assigned shape and size of grid. Serial numbers
(1,2,8,...,4 ..., N') may be allotted to the set of N’ grids in any form necessary.*

61. Now consider the #th grid. There are r, values of z each of which corresponds to one
of the n, basic cells which constitute the grid. Any statistic (in the Fisherian sense) in terms
of these n, values of z belonging to the same /th grid may now be constructed. Any such
statistic may be written as, say, u,{Gr(0, ny)}, where Gr(0J, ;) indicates that n, basic cells
each of size (] are arranged in a certain definite configuration, and u,{Gr(J, ny)} indicates
that the statistic in question has to be constructed from the 7, values of z drawn in the form
of the specified grid. For the sth micro-state there will be N’ such values (given by

=1,2,..., N') which forms a frequency distribution of the given statistic for the sth micro-
state. The fact that all these values belong to the sth micro-state is explicitly indicated by the
suffix s in the form u,{Gr(0,n,)}, where ¢ goes from 1 to N’ for any particular value of s,
and s goes from 1 to N. These NN’ values of 4, {Gr(0J, ny) } form a complete set of sample values
of the statistic under consideration. :

62. Consider now unrestricted sampling; and to fix ideas attention must be focused on
the sth micro-state. A sample consisting of 7, basic cells can now be formed, each of which
is located separately at random over the field, and as in the case of configurational sampling,
the value of the statistic calculated from the 7, values of z drawn separately at random in this
way. Such a value of the statistic will be written as #{R((J,7,)} to distinguish it from
u {Gr(01, ny)}. As [, or the size of the basic cell, will be fixed in any given situation it is not
necessary to mention it explicitly on each occasion. Therefore, henceforth u {R(n,)} and
u,{Gr(ny)} will be written to denote the values of the statistic in question for unrestricted and
configurational sampling respectively. In u {R(ny)} for unrestricted sampling the value of
t can obviously assume , C, values, the number of different ways in which r, can be selected
out of N values of z. This number will be called N”. Itis clear that N"=N’, where N’ is the
corresponding number for configurational sampling, as any group of n, cells which occurs
in N’ must occur in N” but not vice versa. Now take up some other, say, the pth micro-state.

If the procedure of drawing samples of 7, basic cells is repeated, each of which is separately
* This may be called the method of overlapping grids which is analogous to sampling from an urn with
replacement. There may also be a system of exclusive grids which may be defined as a system in which no

two grids have even one single basic cell in common. This would be analogous to sampling from an urn
without replacement, and may be appropriate in special problems not discussed in the present paper.

Vor. 231. Br84 43
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located at random, obviously the same identical set of N” values of the statistic will be
obtained, that is, u,{R(ny)} = uy{R(n,)}, which was obtained in the case of the sth micro-
state. Here, as already explained, R(n,) would mean 7, basic cells taken at random, and
u{R(ny)} would mean a statistic formed from the corresponding 7, values; and obviously
the suffix p or s may be dropped. It should be noted that once the n, values are given—no
matter whether they come from a random sample or grid—u{R(ny)} or u,{Gr(ny)} are the
same functionally and numerically; R(n,) and Gr(n,) denote how the n values have come.
In fact, in unrestricted sampling all micro-states would yield the same identical distribution
of the statistic u{R(n,)}, where ¢ goes from 1 to N”. It is obvious that this is also the same
distribution as that which is obtained from the abstract distribution of z. Thus the important
and practically axiomatic result is reached that in unrestricted sampling the distribution
of any sample statistic based on samples of size 7, is identical for all micro-states and also
for the abstract distribution. In other words, in unrestricted sampling it is not possible to
distinguish between different micro-states or between any micro-state and the corresponding
abstract set of z. In this situation the theory of sampling distribution for the abstract dis-
tribution is sufficient for all purposes.

63. Now consider configurational sampling. Here there are N separate bundles each
consisting of N’ values; and each such set of N’ values belong to a particular micro-state.
Each set of N’ values of the sample statistic u,{Gr(n,)}, where ¢ goes from 1 to N’, constitutes
a frequency distribution. For the sth micro-state write this as F,[u,{Gr(ny)}], where s of course
goes from 1 to N. The corresponding distribution in the case of unrestricted sampling is
written as Fo[u{R(n,)}], where ¢ goes from 1 to N”. This abstract distribution may be derived
(at least in a formal manner, or with sufficient approximation for purposes of numerical
work) when the form of the abstract distribution of z as also of the sample statistic u,(n,) are
known. Call F[u,{Gr(n,)}] the space frequency distribution of «,{Gr(n,)} for the sth micro-
state and write it more concisely as F,[Gr(n,)], and call Fj[u{R(n,)}] the corresponding
abstract distribution of {R(n,)} and write it as Fy[R(ny)]. It has been seen that

F[R(ng)]=Fo[R(n)]-

Random and non-random fields

64. Now consider whether F,[Gr(n,)] and Fy[R(n,)] are always identical for all values
of 5, or whether these two distributions can be distinguished in the case of certain micro-
states. The problem can be approached in many different ways. One method would be to
compare directly any particular space distribution F,[Gr(n,)] with F [R(n,)]. This would
obviously depend on setting up suitable criteria for distinguishing between two frequency
distributions on a statistical basis. It is not necessary to attempt a rigorous development
of tests of difference between two frequency distributions. For the present purpose all that
is necessary is to assume the possibility of judging whether two frequency distributions should
be considered to be distinguishable or not. Once this is granted, then compare one by one
each of the N space distributions F,[Gr(n,)] with F[R(n,)]. In this way the frequency
distributions F,[Gr(n,)] can be divided into two classes, one of which (@) consists of all space-
frequency distributions of u {Gr(ny)}, ¢ = 1,2, ..., N', which are indistinguishable from the
corresponding abstract distribution Fy[R(n,)] of u{R(n,)}, t = 1,2, ..., N”, while the other
class consists of (&) all space-frequency distributions which have to be considered different
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from the abstract-frequency distribution as judged by the particular test of hypothesis and
assigned level of significance which is adopted for this purpose.

65. Corresponding to the space-frequency distributions the actual fields or micro-states
will also naturally fall into two groups, namely: (a) one consisting of all fields or micro-states
for which the corresponding space-frequency distributions of u,{Gr(n,)} are indistinguishable
from the abstract distribution; and () all fields or micro-states for which the corresponding
space-frequency distributions have to be considered statistically different from the abstract
distribution. All fields falling in class (a) are now defined as fields of a random type, and all
fields falling in class () as fields or micro-states of a non-random type. Without entering
into the details of the procedure for such classification it is sufficient for the present purpose
to point out that, as a matter of empirical fact, fields observed in nature have often been
found to be of a non-random type as defined above. Further, it is possible to construct
fields or micro-states for which the corresponding space-frequency distributions are clearly
different from the corresponding abstract distribution.

Mean values and variance

66. Instead of comparing directly the frequency distribution of u {Gr(n,)} with u{R(n)},
where in the first case t = 1,2, ..., N’, and in the second case ¢ = 1,2, ..., N”, consideration
may also be given to their expectation or other moments over the whole range of variation
which, for the first statistic, would mean variation over the sth micro-state. Again, instead
of considering any general statistic u,{Gr(ny)} or {R(n,)}, the mean value or variance of z
based on the n, values of z in each grid in the case of configurational or in each random sample
in the case of unrestricted sampling may be considered. Fixing ideas, consider now the ¢th
grid in the sth micro-state and the #th random sample. Write respectively z {Gr(ny)} and
z{R(ny)} for the mean values of the n, values of z in the #th grid and the ¢#th random sample.
Without difficulty the mean values of z,{Gr(n,)} may be defined (the mean being taken over
all values of ¢). This will be called z{Gr(n,)} and can be written in the following form:

1 ¥
2{Gr(10)} = 3 2 [24Cr ()] (661
The corresponding variance of z,, can be defined in the following way:
1 N~ .
2{Gr ()} = 3 2 [ Grlng)} 2 {Grlng}” (66:2)

Here the sample or grid statistic is z,{Gr(n,)}, which is the mean of n; values constituting
the #th grid in the zth micro-state. For the sth micro-state this has a distribution F[z {G7(n)}]
over t=1,2,...,N'. Instead of considering and comparing these F’s (s =1,2,...,N),
consider here the first and corrected second moments of these F’s which are denoted
respectively by z{Gr(n,)} and ¢2{Gr(n,)}, with s = 1,2, ..., N,

67. Now consider the éorresponding abstract distribution of z. The mean value of z
and the variance of z are of course quite determinate and can be written in the following form:

1) — 3 2 (20, (671
1) = 5 ¥ [—E0)* (67:2)

43-2
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68. If ny values of z at a time are drawn out of N, values, then it is clear that this can be
done in y C, different ways which are called N”. The mean value of z{R(n,)} and its variance
may then be written in the following form:

ER ()} = o 3 (AR}, (68)

PR ()} = o 3 [AR ()}~ SR (682

69. So far as the mean value of the abstract distribution is concerned the position is
clear. The mean value £{R(n,)} based on random samples each consisting of n, values of z
is equal to the mean value £(1) of individual values of z except for a correcting term for cells
in the neighbourhood of the boundary of the field. I have discussed this correction in a
separate note attached as Appendix 6 to this Part.

70. The variance ¢2(n,) for samples each consisting of n, values of z drawn at random is
also determinate, and can be easily calculated for any particular abstract distribution of z.
The variance ¢2(1) of the individual values of z is also, of course, known or can be easily

calculated for any particular distribution of z. In fact, under certain mild and well-known
restrictions, usually

02(ny) = 0*(1)/ny, - (701)

provided that 7, is small compared to N, the total number of cells; otherwise there is a
correcting term. The above equation may also be written in the form

02(ng) /05(1) = 1/n,. (70-2)

71. Now go back to the variance for any particular, say, the sth micro-state or space-
frequency distribution belonging to the above abstract distribution of z. For configurational
sampling in the sth micro-state, 02{Gr(n,)} has been used to represent the variance of in-
dividual grids each consisting of n, basic cells to distinguish it from the corresponding variance
0*{R(ny)} for samples each consisting of n, values of z drawn purely at random, that is, for
unrestricted sampling. For individual basic cells or individual values of z it is, however,
clear that the variance in the case of the space-frequency distribution ¢2{Gr(1)} is identical

with ¢%(1), the variance in the case of the corresponding abstract distribution for all micro-
states. Thus
o{Gr(1)} = o%(1) for s=1,2,...,N. - (71-1)

72. The two values ¢2{G7r(ny)} and ¢?{R(n,)} are, however, not in general equal. At this
stage this may be accepted as a matter of empirical observation. In order to compare these
two variances it is convenient to consider their ratio, namely, o2{Gr(ny)}/c*{R(n,)}. This
ratio will depend on (1) the nature of the abstract distribution of z; (2) the nature of the
particular space-frequency distribution, that is, of the particular sth micro-state under
consideration; and (3) the value of 7. (It will also of course depend on the value of the quad
; but, as already mentioned, such dependence is implied throughout and is not being
explicitly stated.) In the case of sample surveys there will always be an upper limit to the
size of the grid or the sampling unit n,. That is, in actual sampling practice n, will have a
maximum value in any actual situation; and the ratio ¢2{Gr(n,)}/0*{R(n,)} can be adopted,
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where 7, is such a maximum value as a criterion for purposes of classification. On the other
hand, it is clear that for configurational or grid sampling the minimum value of #n; is two;
and the most compact form of a grid is simply a sample unit consisting of two adjoining cells.
Obviously this also may be adopted as the standard basis for comparison. That is,

P2{Gr(2)}/0R(2))

may be adopted as the criterion for the purpose of classification—it being understood
that the grid is to consist of two adjoining basic cells. In the case of two-dimensional
fields, for any given network of basic cells, the junction of the two will be along either
of two standard orthogonal directions. Thus Gr(2) will involve two possibilities which
may be written Gr(0, 1) and Gr(1,0), so that ¢2{Gr(2)} for any Gr will have two alternative
values. '

73. Call this ratio ¢2{Gr(2)}/c{R(2)} say 0,. It is clear that 0, will have a definite value
for each space-frequency distribution, that is, for each micro-state. In this way a series of
N values of §, may be obtained which can be ordered in, say, ascending magnitude. For
purposes of classification it becomes necessary at this stage to adopt two suitable critical
values of 6, on two sides of unity which may be called 6, and 6; respectively. 6, and 6; may
be chosen as definite magnitudes, or ¢, and §; may be chosen in such a way that a definite
proportion of values of 6, (such as 5°/, or 1°/, or 1°/,,) lie outside the range 8,—0;. It is
clear that in this way the N different values of §; can be separated into two classes: (a) one
consisting of all values of ¢, falling outside the critical range ,—0;, and () the other class
consisting of all values such that 6,<6;<6;. In this way the corresponding micro-states
would also be separated into two distinct classes: (@) those micro-states for which 6, or

the ratio
o3{Gr(2)}/e*{R(2)}

lies outside the critical range #,—0;, and () those micro-states for which 6,<0,<8;. All
micro-states or fields falling in the first group (¢) may now be defined to be of a non-random
type at the assigned level of significance. On the other hand, all micro-states or fields falling
in the second group (5) may be considered to be of a random type at the assigned level of
significance.

74. Itis worth while explaining at this stage one point on which depends the success or
failure of the present methods of differentiation between random and non-random fields.
The notation for grid statistic for the sth micro-state has already been introduced, namely,
u{Gr(ng)}, (¢t =1,2, ..., N'), and random-sample statistic for the same micro-state or random-
sample statistic for the abstract distribution «{R(ny)}, (¢ =1,2,..., N"); the associated fre-
quency distributions have been called F\[u,{Gr(ny)}] and Fy[u{R(n,)}], where the first ¢
varies from 1 to N’ and the second from 1 to N”. Considering all the NN’ values of u {Gr(n,)}
with s varying from 1 to N and ¢ from 1 to N’ (that is, summing over any micro-state and
then over all such micro-states), another abstract distribution of u {Gr(n)}is obtained which
is called Fu,{Gr(n,)}]. Apartfrom the question of a border effect (whichis negligible when the
area covered by the grid is small compared to the total area and which otherwise merely
introduces a correcting term), ' may be identified with F, but is usually slightly or largely
different from F, (s = 1,2, ..., N).
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75. Instead of considering the distributions F; (s = 1,2, ..., N), F or F,, consider their
moments (of any order) or any other property or characteristic of the distribution which
may be denoted by C; (s = 1,2, ..., N), C or C, respectively. In this case Cis to be identified
with Cy; but the C;’s will usually differ from C or C,, some slightly and others largely. These
G’s(s=1,2,...,N)formafrequency distribution. Depending on () the form of the abstract-
frequency distribution, (b) the nature of the physical field, (¢) the statistic u,{Gr(n,)} chosen,
and (d) the particular characteristic C;, C and C selected to describe the frequency dis-
tributions F[u,{Gr(ny)], Flu,{Gr(ny)}] and Fy[u{R(n,)}], the distribution of C;’s (i) will
usually give a heaped curve, (ii) will become more and more heaped as N, (and hence V)
is increased, and (iii) the value which C; approaches, that is, the point about which the peak
grows with increasing N, and N, is usually the value C, or C. If (i), (ii) and (iii) happen
to be true then C; may be spoken of as stochastically or probabilistically converging to C,
or C. Itislikely thatin most cases (ii) and (iii) will follow from (i), but this cannot be assumed
in the abstract set up. Under conditions (i), (ii) and (iii) for any value of N, (and N) the
centiles of the distribution of C,’s can usefully be plotted (s = 1,2, ..., N), and it is possible
to judge whether at any assigned level of significance a given field is of random or non-
random type, fields for which the values of C,’s are near enough C; (or C) being considered
random and those for which C;’s are farther off being considered non-random. The success
of this method of differentiation essentially depends upon (i), (ii) and (iii) being true, which
again depend on (a), (6) and (¢) and (d). The important point to be noted is that concrete
examples have actually been found (e.g. variance function) of (a), (¢) and (¢) for which
(i), (ii) and (iii) hold good.

76. The formulation adopted here may be briefly described in the following way. In
the case of what has been called the abstract distribution, there are y C, or N” samples;
and corresponding to each sample there is a statistic in the Fisherian sense. That is, there
are altogether N” statistics. Corresponding to the abstract distribution there are N micro-
states or space distributions. For configurational sampling with grids, each of which consists
of n, cells, there are N’ different locations of grids for each micro-state. Corresponding to
each such location there is a value of the statistic which may be called the grid value. There
are thus N’ grid values for each micro-state, so that altogether there are NN’ grid values
for the complete set of N micro-states. This number will be usually much larger than N”,
that is, many of the grid values would occur in more than one micro-state. In addition to
the sample statistics, the expectation of grid values over each particular micro-state which
may be considered to be a certain characteristic of the distribution of the grid values
over that particular micro-state, deserve attention. Thus there are N values of the
particular characteristic for the N different micro-states. The point to be emphasized is
that these characteristics are neither statistics in the direct Fisherian sense nor parameters.
The characteristics are expectation values from one point of view, and yet have their own
distribution over the different micro-states.

77. It is worth noting that here is found an analogue of Bernoulli’s theorem in prob-
ability or the law of large numbers. The functions F,, F and F,’s (s = 1,2, ..., N) together
with values of the characteristics C, (s = 1,2, ..., N) associated with the micro-states raise
a whole body of new problems of sampling distribution, of estimation, and of testing of
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hypothesis which may be regarded as space generalizations of the corresponding classical
theory for abstract distributions.

78. Coming back to ¢2{Gr(n,)} and o*{R(n,)}, it is observed that the ratio of
oH{Gr(ng) }o*{R(no) } =0,

supplies a simple procedure for the separation of random and non-random micro-states or
fields which is adequate for the present purpose. It is thus seen that any given observed field
which occurs in nature may be classified as belonging to either the random or the non-
random type at an assigned critical level of significance. This distinction has several im-
portant consequences which are now stated without proof:

(1) For unrestricted random sampling, that is, for any sampling procedure in which each
individual value of z or each individual basic cell is drawn at random, the variance of the
mean value of z based on samples of 7, is the same for random and non-random fields and
is equal to the variance of the corresponding abstract distribution of z.

(2) For configurational or grid sampling, in which each grid (consisting of a group of 7,
basic cells arranged in a definite pattern) is located at random, the variance ¢2{Gr(n,)} in
fields of a random type is equal to the variance ¢2{R(n,)} for the corresponding abstract
distribution.

79. In terms of our criterion 0, =0%{Gr(ny)}/oc?{R(n,)}, the above results may be stated
in the following form:

(1) For unrestricted random sampling §; = 1 for fields of both random and non-random
types.
(2) For configurational or grid sampling 6,< ¢, <0, for fields of a random type.

(3) For configurational or grid sampling 0, lies outside the critical range 0,— 6, for fields
of a non-random type.

80. These results are based partly on empirical and partly on logical considerations—
considerations which will be elaborated at a later stage. As regards (3) it is sufficient to note
that fields for which the variance of grids is statistically different from the variance of the
corresponding abstract distribution have been actually observed to occur in nature. Model
or artificial fields can also be easily constructed to illustrate this. As regards propositions
(1) and (2) a proof under certain mild restrictions for linear or uni-dimensional fields is
being given in a Note in Appendix 1 to this Part. Theoretical aspects of the question are
being investigated in the Statistical Laboratory, Calcutta, and the results of these investiga-
tions will be published in due course.

81. The choice of the critical region #,—6; is no doubt arbitrary in the same sense as
the choice of the critical level in tests of significance; in the ultimate analysis the choice has
to be guided by considerations of practical usefulness. In the present case also the choice
of 0y— 0, would ultimately depend on what difference is caused to the cost of operations (or
alternatively to the precision of the final estimate) by the random or non-random character
of the field. Fields for which no appreciable difference in either cost or error is caused by
treating them as either of a random or a non-random type for purposes of sampling technique,
may be obviously classified as of random type. On the other hand, for fields for which greater



352 P. G. MAHALANOBIS ON LARGE-SCALE SAMPLE SURVEYS

economy can be secured by treating them as being of a non-random type should naturally
be considered to belong to this type. The basicidea is clear ; and this question will be discussed
further in a later section.

Zonal sampling

82. So far consideration has been given to the case of the unitary field or a single zone.
Itis, however, possible to extend the treatment without difficulty to the case of zonal sampling.
Here the whole field is divided into a suitable number of zones. A little consideration will
show that each of these zones may be either of a random or of a non-random type in the
sense explained above. All the zones may be of a random type, or all the zones may be of
a non-random type. These are the two forms which usually occur in nature. It is, however,
possible in the same field for certain zones to be of a random and certain other zones to be
of a non-random type; but such cases are probably rare. From the point of view of sampling
technique, methods of zonal unrestricted and zonal configurational methods have to be
considered. But it is not necessary at this stage to develop the abstract formulation in
greater detail.

2. THE VARIANCE FUNCTION

83. Consideration is now given in greater detail to the sampling variance of the estimated
mean value of z based on all possible samples. The uni-stage case is first considered. It will
be remembered that for an abstract distribution neither unitary configurational nor zonal
unrestricted nor zonal configurational sampling has any meaning or relevance. In the case
of the abstract distribution ¢%(1) was used to denote the variance of individual values of z.
The notation will be changed slightly and written as V(1). This will always exist in the case
of a finite population consisting of ¥, values, but may or may not exist for an infinite popula-
tion.

84. Now consider samples of 7, values of z drawn at random. The total number of ways
in which such samples of 7, may be drawn out of N, values is y C,, which may be written
as N”; z{R(n,)} has been used to denote the mean value of z based on such 7, values, R(n,)
indicating that they are drawn at random; V[z{R(n,)}] is written to represent the sampling
variance of z over all possible values of ¢ from 1 to N”. When there is no chance of confusion
this will sometimes be written more simply as V[R(n,)] or even V(n,). This also will always
exist for finite populations but may or may not exist for infinite populations. For a finite
population of N, basic cells or values of z it follows that

VLaR(} = VIR(0))=Vng) = 21— 2=1), (s41)

and for an infinite population when V(1) and V(n,) both exist
V(ng) = V(1) /nq, (84-2)
which will be called the normal form.

85. Now consider physical fields. It has been seen that from any given abstract distri-
bution it is possible to generate a system of space distributions or micro-states. Now con-
sider the sth micro-state, and also samples of 7, basic cells drawn either individually at
random or in the form of a grid. Consider the ¢#th sample for the sth micro-state. The mean
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value of the 7, values of z in the unrestricted case can be written as z,{R(n,)}, while the
corresponding mean values in the case of grid sampling is written as z,{Gr(r,)}. Now write
the variance of z,{Gr(ny)} over the sth micro-state, i.e. by summing over all possible values
of t from 1 to N’, as V[z,{Gr(ny)}], which will sometimes be written as V,[Gr(ny)]. In the
case of unrestricted sampling the corresponding variance will be written as V,[z {R(n,)}],
where the summation is over all values of ¢ from 1 to N” in this case.
When 7, = 1, then
VlzdGr(D}] = Iz R} = 02(1) = V(1) (851)

for finite populations, and also for infinite populations when V(1) exists.

86. Now compare the results for two, say, the sth and pth micro-states, in the case of
unrestricted sampling in the first instance. In each micro-state there are N, basic cells out
of which 7, cells are drawn individually at random in each sample. The total number of
ways of doing this is y,C, , which has been written as N”. This number N” is the same for all
micro-states, as well as for the abstract distribution. Every possible combination of n,
values selected out of N, values of z would thus occur in all these cases. From this it follows

that for unrestricted sampling
VizdR(no)}] = V,[2,dR(10)}] = V[2{R(n)}]

_ Véj){l—;(%:ll} — V(ny). (86:1)

That is, for unrestricted sampling the variance of the estimated mean value of z over all
possible samples for each micro-state is the same and is equal to the corresponding variance
in the case of the abstract distribution. Another line of proof (which is also applicable in
the case of infinite populations) is indicated in the section on the correlation function.

87. Now consider configurational or grid sampling. Here there is one definite value of
V[z,{Gr(n,)}] (obtained by summing for all values of ¢ from 1 to N’ the possible number of
different grids in each micro-state) for each micro-state. N such values are obtained as s goes
from 1 to N. Now write g, as the corrected fourth moment of the abstract distribution of z,
and B(N,) as the expectation of

N (V[2AGr(n)}1%) — VIz{R(ne)}] (87-1)
(over all possible micro-states, i.e. for all values of s from 1 to N). If g, is finite for inde-
finitely large values of N, then it can be shown in the case of an endless linear field that

P Tz AGr(ng) /| VIzAR(10)}] | <e 12338, (87-2)
where P denotes the probability of V,[z,{Gr(n,)}] and V[z{R(n,)}] differing by less than ¢,
the probability having reference to the frequency distribution of V; over all possible micro-
states, that is, for all values of s from 1 to N. (The proof is given in Appendix 1.)

Since V[z{R(n,)}] = V(1)/n, (when n is small compared to N,) the above result may be
written in the following form:

il

VoL. 231. Bj584 . 44

B(N,)

62—]\[;2;. (87'3)

FlzGri - | <e]>1-
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This shows that when g, and V(1) exist the variance of the estimated mean value of z based
on n, basic cells drawn from any micro-state will probabilistically (over the micro-states)
converge to V(n,) or V(1)/n, by sufficiently increasing N, (the total number of basic cells)
and hence N (the total number of micro-states). In other words it is found that the frequency
distribution of V,[z,{Gr(ny)}] for s = 1,2, ..., N is a heaped up distribution which becomes
more and more heaped round the value V(n,) or V(1)/n, as N, (and hence N) are increased.

88. It is clear that the values of the variance for different micro-states can be arranged
in ascending order, and thus form accumulated frequencies and percentile points. Although
most of the values of V;[z,{Gr(n,)}], which may be written more concisely as V,[Gr(n,)] or
even as V,, will be heaped up near the value V(n,) or V(1) /n,, it is clear that some of the values
in either tail end will differ by large amounts from V(n,) or V(1) /n,. This supplies a concrete
basis for the classification of the fields into random and non-random types. Suitable critical
intervals may be chosen say, V, and V', on either side of V(1) /n,, either as absolute magnitudes
or in terms of centile points. The N values of ¥, will now fall into two classes: (a) those which
fall within the range of V, or V', on either side of V(1)/n,, and (&) those which fall outside this
range. At the assigned critical level all values of V, falling into class (4) must be treated as
statistically distinguishable from V(1)/n,. All micro-states corresponding to these values of
V. in class (b) are then defined to be of a non-random type. On the other hand, all values
of V, falling into class () may be considered to be statistically indistinguishable from V(1) /n,,
and the corresponding micro-states are considered to be of a random type.

89. On the basis of such classification it is seen that for space distributions of a random type
Vilz{Gr(ng)}] = Vi[2{R(ne)}] = V(1)/n,, (89-1)

where the sign of equality is to be interpreted as indicating statistical indistinguishability at
the assigned critical level.

90. In the case of fields of a non-random type the sampling variance of the estimated mean
value based on configurational sampling is, on the other hand, statistically different (at the
assigned critical level) from the corresponding variance for the abstract distribution.

91. Extensive sampling experiments on practically every natural field studied so far have
shown that the above result is true for such variates as crop acreage or crop yields. In most
cases it was also found that the variance of the mean value in configurational sampling
could be graduated by an equation of the form

VilzdGr(no)}] = V[Gr(ng)] = b/(Tn)?, (91-1)

where b and g are constants implicitly supposed to depend on s.

Zonal sampling

92. Consideration may now be given to zonal sampling, taking up the uni-stage case in
the first instance. Here there are [ different abstract distributions based on different numbers
Ny (k=1,2,...,1), and corresponding to each there is one micro-state or zone (out of N,
possibilities with £ = 1,2, ..., /) in the actual field under survey. For the given set of / abstract
distributions there are thus N, x N, X ... X N, (or, say N) micro-states. Let any such micro-
state be called s with s = 1,2, ..., N. Let z, be the value of the variate per unit area estimated
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in the kth zone. Then the estimated total value for the whole area under investigation is
given by
!
z= 2 A,z,. (92-1)
k=1

Since n, grids are taken at random in any kth zone and independently of a similar number of
grids in any other zone, the sampling variance or the corrected second moment of z over all
possible samples will evidently be given by

V= 3 A {Gry(Ch o), 03 (022)

in the most abstract formulation, where Gr, {0, n,;} indicates that samples are drawn in
the form of grids, each of which consists of n,, basic cells each of area [,, and w, = n,/4, is
written so that w, is the density of grids per unit area. This ¥, will be called the variance
function. It is suggested by experience that in the same region the basic cell [, and
the grid pattern Gr, may be conveniently taken to be the same for all zones and may,
therefore, be replaced by 00 and Gr. Our experience has also been that ¥, has the same
functional form ¢ (though the numerical values of the parameters do vary in this case from
zone to zone) for different zones. Further, in actual practice 0 is usually replaced by some
conventional unit, and its explicit mention may be dropped although its presence is implied
throughout. Hence (92-2) may be replaced by

V= 3 A p{Crlng), wy, dg), (92:3)

where d, now collectively stands for a group of parameters which might differ from zone to
zone, being functions of z, and other zonal characteristics, and where the form of the function
¥ depends on the random or non-random nature of the field and, among other factors, on
the particular grid pattern chosen.

93. I have already mentioned that in many cases it was found that a special form of the
function ¢, namely, 6/(n,00)¢, gave good graduations. Adopting this form, and introducing
the suffix £ to denote the different zones, it follows that

/
| 4 :k§1Ak by /wi (mo) ¢, (93-1)

where b, depends on z, for the zone in question, and g, also is a zonal constant involving z,
and the grid pattern Gr, (O, ny,) or in the simpler case Gr(, n,,) or more simply Gr(ny,).
It may be mentioned here that 4,’s and g,’s will implicitly depend upon the particular micro-
state s chosen (s = 1,2, ..., N), but this dependence is not here explicitly stated. Now put

i
V()EkglAkb—k/(nOkwk>’ (93-2)

where b,’s (k= 1,2, ...,1) are supposed to be constants depending upon the / abstract dis-
tributions but independent of the space distributions. Itissurmised (and can be also proved
—but this will be discussed in a later paper) that I’s will form a frequency distribution
heaped up about Vj—the heaping up being sharper and sharper the more we increase
Ny’s (k=1,2,...,0). In technical language V’s stochastically converge to I} by sufficiently
44-2
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increasing Np,’s (k=1,2,...,]). For any set of N,,’s the frequency distribution of V;’s can
be cut at any convenient assigned level; and any given space distribution (over / zones)
is to be called random or non-random at the assigned level of significance on the basis of its
calculated V..

94. In a more general set-up for the random sample, ¥} of (93-2) is replaced by

V()Eké: lAk YidOks (Mox W)} (94-1)

where the (Gr) symbol is omitted to indicate that the variance is independent of the grid
configurations. Assuming a constant value for the basic cell size and the same general form
i for the general variance function then reduces to

=3 A0, (), do (042

95. Certain results regarding the variance function have already been stated in the case
of unitary unrestricted and unitary configurational sampling for the abstract distribution
as well as for space distributions of both random and non-random types. Consideration may
now be given to zonal fields. As mentioned before, a zonal random field would consist of
a number of different zones with different mean values of the variate z but each zone being
separately a random-space distribution. Similarly, a zonal non-random field would consist
of a number of zones each of which is a space distribution of a non-random type. Certain
results will now be stated for zonal fields which appear to be plausible in the light of actual
experimental studies and partly also on logical grounds.

(1) Under unitary unrestricted sampling, zonal fields classified into both random and
non-random types (under the criterion already mentioned and at any assigned critical level)
will have the same variance function of form V(n,), where 7, is the total number of basic
cells or units of conventional area included in the sample.

(2) Under unitary configurational sampling zonal fields of random and non-random
types, classified in the same way as in (1), will have different variance functions, each being,
however, different from V(n,).

(3) Under zonal unrestricted sampling, zonal fields of both zonal random and non-
random types will have, under certain broad restrictions, variance functions of the form
(94-1) or (94-2) or (93-2).

(4) Under zonal configurational sampling, fields of the zonal random type will have
variance functions of the form (94-1) or (94-2) or (93-2) as under (3) for zonal unrestricted
sampling ; but fields of a non-random type will have variance functions of the form (92-2),
(92:3) or (93-1).

96. As observed earlier this variance function is but one of the various possible means to
distinguish between space distributions of random and non-random types. Other methods
will be considered in later sections, and the consistency between the different methods will
be discussed.

97. Thus far for uni-stage sampling. There is an obvious extension to multi-stage sam-
pling which involves really nothing new in principle and which will be considered later.
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But brief consideration may be given to the case of several variates say p in number. As
before ¢ = 1,2, ...,p will be used to represent the different variates, say p different crops.
z,; will be written as the mean value of the ith variate in the Ath zone. The estimated total
value for the ith variate would be given by

é (dpzy;) for 1=1,2,..,p. (97-1)
k=1

98. It is possible of course to have different grid patterns Gr,; and basic cells 00, and
different values of n,,; and w,; for different crops in the same zone. That is, in the most
general case the variance function for zonal non-random fields under zonal configurational
sampling may have to be written in the form

/
kg lAk Ui Gri(Ois Moga) s Wi (98:1)

wherei = 1,2, ..., p. But usually it will be possible to keep the grid pattern Gr,; and the values
of O, and w,; the same for all variates in the same zone, in which case the variance function
for zonal non-random fields under zonal configurational sampling will be given by

kélAk VA Gri(Ops ox) > Wy (98-2)

This is the abstract set up. The more concrete one (based on the generally adopted pro-
cedure) will be

kélAk YA, (noxwy)s i (98:3)

where the group of constants d,; involve not merely the physical peculiarities of the zone but
also the mean value z,; for the particular variate ¢ and the particular zone £. As in the case
of one variate so here also in many situations, and (mostly with grids of compact shape) it
has been found that (98-3) takes the form

l .
kglAkbki/wk(nOk)gki (t=1,2,...,p), (98-4)
where &,; and g; depend on z;; and the physical peculiarities of the zone.

3. THE CORRELATION FUNCTION

99. The efficiency of uni-stage sampling depends on the variance function. In actual
planning of such surveys the determination of the variance function is, therefore, a problem
of great. importance. This question can be studied in two ways—by direct experimental
work on the field, and secondly, by model sampling experiments in the Laboratory on the
basis of material in the form of a complete enumeration or inventory of particular regions.
In this method an area of a convenient size is surveyed in detail and a map is prepared ; and,
with the help of this map, model sampling experiments are carried out with various sizes
of grids. In making these studies it was found that the use of certain auxiliary methods is
often convenient. '

100. One such auxiliary tool, namely, the correlation function which is closely linked to
the variance function and throws a good deal of light on it, will now be described. The
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general approach can be explained very briefly. In a non-random field the decrease in the
variance with increasing size of samples is less than that in a random field. A little con-
sideration will show that this may be ascribed to the existence of correlation between the
values of the variates in neighbouring cells. This is the basic idea which will now be developed.

101. Suppose now that the field under survey, the sth micro-state, is rectangular and
consists of N, = N, x N, cells, there being N, columns each consisting of N, cells, and N,
rows each consisting of N, cells. (This particular shape of the field is convenient but does not
affect the generality of the results.) Each cell can be identified with the help of a pair of
co-ordinate numbers (¢, j'), where 7’ goes from 1 to N, and j' from 1 to N,. As usual, the value
of the variate for any basic cell will be represented by z(z’, ;') for any micro-state. (The suffix
s is dropped as the results are true for all micro-states.) Consider a second cell separated
from the above cell by a gap of (7, j) cells; the value of the variate for this second cell would
then be z(i' 41,7 +j). If the size and shape of the gap remains constant, that is, (z, ) is
constant, then the value of i’ goes from 1 to (N,—i), and ;' goes from 1 to (N,—j). The
co-variance between z(i', j') and z(i'+1,j'+j) can now easily be written down. V{} will
be written for the variance, ¢{ } for the standard deviation of the variate mentioned within
brackets, and 6{ } for the covariance and p{ } for the correlation between the two variates
mentioned within brackets. Thus

0z(t',5"), 2(i' +1, j' +5)} = o{z(i', J')} o{z(' 414, )" +9)} p{z(8557)s 2(8" + 3, +j"+))}, (101-1)
and hence

plz(i’ ), 2 +4, 5 )y =p6g) e
_ e, g) 2@ M e i g ) —2( 4 g ) (101-2)
[242(2,5) —2(0 7)1 X [Z2(d +14, 5" +j) —2( 44, -+

where the summation is to be taken over ¢ =1,2,..., (N,—1), and j' =1,2,..., (Ny—J);
and z(¢,j) and z(i' +1¢, /' +/) represent mean values over domains indicated by the (7', ;')
summation. The function defined by the right-hand side of the above equation (101-2)
will be called the correlation function of a pair of cells separated by a fixed gap (¢, j) and
will be written as p(z, 7).

102. The variance of the mean value of z(¢', ;') and z(:'+1, j'+/) would be given by
VIz(', ") 2@ i+ = 2V, )+ AV + 6, g +)3 4302 57), 2(0 465" +7)}

= WV J) IV 4, ) dele( ) o2 (@ 4, 5 1) e ). (10201
103. When the gap (z,) is small compared to the size of the total field the (z/, ') sum-
mation can be taken over the entire field, and in such a case

VIEz(, ") 20 +5,5" +)3 = V(0 [T+ (50)]; (103-1)

where V{z(i’,j')} is, of course, the variance of individual cells and is what has previously
been called V(1); the left-hand side of (103-1) is the variance function for grids each con-
sisting of a pair of cells at a gap (i, j) which may be written more concisely as V(z, 7). Thus
for any micro-state it follows that

V(i,j) = V(1) [+ )], (103-2)
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Thus a relation between the variance function and the correlation function which is really
of one-to-one correspondence is established.

104. In particular, for any micro-state ¢ = 0, j = 1, or ¢ = 1, j = 0 may be written, and
in this case V(0,1) or V(1,0) may be expressed as

[%?8 =%V(1)[1+zg(l):(l)§ . (1041)
> [ o)/ =a[1+20 01, (1042

where p(0,1) or p(1,0) represent the correlation between adjoining cells in two different
orthogonal directions. This gives us a one-to-one relation between the variance and corre-
lation function at unit gap, i.e. for adjoining cells.

105. For a grid pattern with 7, cells forming a certain configuration let one cell be at
(¢, ') and other cells be at (¢'+¢, j'-+7) with certain given values of ¢ and j; (¢/, j*) will of
course run over nearly the whole field subject to certain restrictions near the boundary
necessitated by the condition that no cell of the grid may go out of the field. Then

14 —Zz "+, +J)J [2 Viz(i'+i,5 +J)}]

Oz Jj 1]
1 o S
+n_(2, S [ofz(' iy, J 50} o{2(i iy, ' H10) {2 (8 iy L), 2(5 H1g, +J2)}s
i1y 2y 1 J2 :
o ) (105'1)
where b g J1 770 and p{z(t +1, j’ +]1) z(t' +-1g, J' +72)}

may be changed into p(¢; —1,, j, —J,), the summation being taken over all possible values of
115 9, J1, J2 SUbject to the condition that 7, #1,, j; #7,.

106. In particular, when the area covered by the grid pattern is small compared to that
of the total field under investigation V{z(¢+1, ;' +)} can be taken to be thesame as V{z(z", j')},
and furthermore in V{z(z',;")} itself (¢, ') may be supposed to have run over the whole
field, the usual boundary effect being ignored; in such a case V{z(:'+i,j'+j)} can be
replaced by V{z(¢', j')}, which is now the same for all micro-states. In such a case V{z(¢', j')}
reduces to V(1); and equation (105-1) may be replaced by

4 5;2 (' +6,5"+j }] )[no+ > {o( _12,]1"]2)}] (106-1)
) i1 92 J1 J2

the summation for p being over all values of ¢, 7}, 2,, 5, subject to restrictions already indicated.
There are, therefore, ny(n,—1) terms in the p-summation, or with a duplication really
n,C, terms. The correspondence between the variance function for a grid pattern and the
correlation function for different possible pairs taken out of the cells constituting the grid
pattern is thus not one-to-one correspondence. The above relation, however, supplies
a convenient and labour-saving device for studying the variance function with the help
of the correlation function.

107. The correlation function also opens out the possibility of studying questions of

optimum size and shape of blocks in agricultural field trials from a new point of view. The
saving in computational work in any case would be considerable. But this is not all, the
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correlation function is likely to throw some light on the theory of design of experiments in
the case of non-random fields.

108. It will be noticed that the treatment adopted here is a kind of generalization for
two dimensions of the method of serial correlation in the case of time series on which a large
volume of work is already in existence. In fact, in many instances results for serial correlation
are capable of being extended in two dimensions without difficulty. But, as can be easily
seen from the above discussion, many new problems arise in the case of the two-dimensional
correlation function which have no analogue in the case of serial correlation.

109. For simplicity the concept of correlation function has been developed with reference
to the unitary configuration type of sampling. A corresponding development (involving,
however, nothing fundamentally new in principle) may be easily given with reference to
other types of sampling.

110. Itisclear thatin the same manner as the variance function the correlation function
may be used as a tool for differentiation between random and non-random space distribu-
tions. The general principles have been explained earlier. It may be useful to recapitulate
the procedure with special reference to the correlation function. Consider an abstract
distribution and the totality of all possible N associated space distributions or micro-states
which can be generated from the abstract distribution by all possible distributions of the
values of z over the different cells. For any given abstract distribution there are thus a bundle
of N micro-states. For each micro-state there is a definite value of p,(z,7), and these p,’s
(s=1,2,...,N) for all micro-states may be now arranged in the form of a frequency dis-
tribution with centile points for p (2, 7).

111. On partly experimental and partly intuitive grounds there are reasons for believing
that the frequency distribution of p,, for any given gap (i, ) over different micro-states
(s=1,2,...,N), will have a form such that there is a heaping up near zero and a falling off
at the tail ends +1. Furthermore, by sufficiently increasing N or N this frequency dis-
tribution of p, (over s =1,2,..., N) becomes more and more peaked up about the value
zero. The theoretical discussion of these properties of the frequency distribution of p, (for
s=1,2,..., N)isbeing reserved for a subsequent paper. On positive and negative sides of zero
suitable critical levels are now chosen, say, p, and p;, cutting at, say, 5 9, by the tail ends of
the above-mentioned frequency distribution of p,. If an observed micro-state or space
distribution is found to have a value of p, (7, j ) not lying between p, and pg, then at the assigned
level of significance (which must be necessarily arbitrary depending upon the stringency
with which the classification is made) it can be asserted that the micro-state in question is
non-random. If the observed p,(, ;) lies between p, and pg, then the observed micro-state
may be considered to be of random type at the assigned level of significance. The choice
of the critical level in this case (as in the case of the variance function) will depend, as already
pointed out, ultimately on whether any material difference is made or not in the cost of
operations by treating the field under survey as belonging to the random or non-random type.

112. One point requires to be emphasized at this stage. Attention is here confined (as
in the case of the variance function) to fields which are fundamentally non-periodic in
character. The implications in the case of the correlation function may be indicated in the
following way. Consider any particular, say, the sth micro-state, then p (7, j) has a deter-
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minate value for a pair of the gap co-ordinates (¢, j). Consideration may now be given to
the variation in the value of p,(¢, ) as (7, ) are increased from (0,1) or (1,0). By a non-
periodic field is meant a space distribution in which the value of p(i, ;) on the whole (that
is, possibly with minor fluctuations) decreases as the values of ¢ and/or j are increased. In
a fuller theory it is necessary of course to take into consideration periodic or quasi-periodic
fields, but for present purposes this is not essential, as fields which occur in nature in the
case of large-scale sample surveys have been found so far to be practically of the non-periodic

type.
113. Now study a little more closely the nature of the correlation function p,(7, j). It is
found from (102-1) for any, say, the sth micro-state

AECR O RN YA ) -
= Expectation [{z,(¢', ') — 2@, W}z (i’ +ir ' +7) — 2 67+
(113-1)

the expectation and the mean values (indicated by the bars) being taken over appropriate
domains. Now relax the condition that (z, j) refers to a fixed gap and consider (¢, j) to denote
any possible gap whatsoever, then p (7, j) would be replaced by p,(2) (which is of course
different from p (0,1) or p,(1,0), which refer to adjoining cells) and would simply mean
the correlation between any possible pair of cells (identical cells also not being excluded)—
the summation being taken over all parts of the given space distribution. In such a case the
right-hand side of (113-1), which is
2 2 {z.(0,5") =2, "V Hz (@ + 4,5 +5) =2, 45,57+

may be conveniently written as

_Zj,{zs(iﬁf’) —2,(1, ")} 2 {2,(6,9) =21, )} (113-2)
1, ]
But ¥ {z,(z,7) —z,(2, 7)} is evidently zero. Hence (113-2) is zero.

i

114. The following statements can therefore be made, which can be justified either on
empirical grounds or on grounds partly logical and partly intuitive:

(1) Under unitary unrestricted sampling the correlation function is (statistically) zero
for all micro-states. In our symbolic language this can be expressed as

p,(2) =0, (s=1,2,...,N).

(2) Under unitary configurational sampling the correlation functions over different
micro-states will be heaped up about the value zero and will be more and more heaped up
about that value the more N, (the number of basic cells) and hence N (the number of
possible micro-states) is increased. For any N, the distribution of p’s over s =1,2,..., N
yields percentile points and thus enables one to judge whether, at any preassigned level of
significance, a given micro-state is to be called random or non-random on the basis of its
correlation function. For a number of space distributions, either observed in nature or
artificially generated by processes (functional or otherwise) different from those associated
with random numbers, values of p, have been observed which are greater than an<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>